色子模拟
不能有连续rollMax[x]个数字x
int dieSimulator(int n, vector<int>& rollMax) {
// 设dp[i][j]表示取i次数、第i次取数为j的不同序列数,
// 要求不能有超过r=rollMax[j]个j,
// dp[i][j] = dp[i-1][not_j] /*连续1个j*/ + dp[i-2][not_j] /*连续2个j*/ + ... + dp[i-r][not_j] /*连续r个j*/,
// = sum{ dp[i-k][not_j] }, k在[1..rollMax[j]]
// 令sum[i]表示取i次数的不同序列数,则sum[i]=sum{ dp[i][j], for all j },sum{dp[i][not_j]}=sum[i]-dp[i][j],
// 所以dp[i][j] = sum{ sum[i-k]-dp[i-k][j] }
const int MOD = 1e9 + 7;
const int R = rollMax.size();
vector<vector<int>> dp(n + 1, vector<int>(R, 0));
vector<long> sum(n + 1, 0);
sum[0] = 1; // 这个是关键,空集算1个序列
for (int i = 1; i <= n; i++) {
for (int j = 0; j < R; j++) {
for (int k = 1; k <= rollMax[j] && i - k >= 0; k++) {
dp[i][j] = (dp[i][j] + sum[i-k] - dp[i-k][j] + MOD) % MOD;
}
sum[i] = (sum[i] + dp[i][j]) % MOD;
}
}
return sum[n];
}